Поиск в разделе:

Параболоид - значение слова

≈ под именем П. подразумеваются поверхности второго порядка, не имеющие центра. П. вращения, поверхность которого образуется вращением параболы вокруг ее оси. П. эллиптический, выражаемый уравнением: х 2/p + y2/q = 2z, сечения которого плоскостями, перпендикулярными к оси Z-ов, суть эллипсы, главные оси которых заключаются в плоскостях ZX и ZY, а сечения через ось Z -ов суть параболы. П. гиперболический, уравнение которого: х 2/p + y2/q = 2z. Сечения этой поверхности плоскостями, перпендикулярными оси Z -ов, суть гиперболы, главные оси которых заключаются в плоскостях ZX и ZY. Всеми плоскостями, не параллельными оси Z- ов , поверхность эта пересекается по гиперболам, а всеми плоскостями, параллельными этой оси ≈ по параболам. Поверхность эта линейчатая, так как на ней укладываются две системы прямых. Свойства этих поверхностей рассматриваются во всяком курсе аналитической геометрии в пространстве. См. напр. "Основной курс аналитической геометрии" проф. К. А. Андреева. Д. Б .
Энциклопедический словарь. Брокгауз Ф.А., Ефрон И.А.
ПАРАБОЛОИД, параболоида, м. (см. парабола) (мат.). Поверхность второго порядка, не имеющая центра. Параболоид вращения (образуется вращением параболы вокруг ее оси). Эллиптический параболоид. Гиперболический параболоид.
Толковый словарь Ушакова

Относится к: