Поиск в разделе:

Асимптота - значение слова

ж. геометр. прямая черта, вечно близящаяся к кривой (гиперболе), но никогда с нею не сходящаяся. Пример, для объяснения этого : если какое-либо число все делить пополам, то оно будет умаляться до бесконечности, но никогда не сделается нулем.
Толковый словарь Даля
(от греч. слов: α, συν, πίπτω) - несовпадающая. Под асимптотой подразумевается такая линия, которая, будучи неопределенно продолжена, приближается к данной кривой линии или к некоторой ее части так, что расстояние между обеими линиями делается менее всякой данной величины; иначе говоря, А. касается данной кривой линии на бесконечном расстоянии от начала координат. Всякая другая линия, параллельная А., хотя и приближается непрестанно к кривой, однако, не может быть названа в свою очередь А., так как расстояние ее от кривой не может быть уменьшено по произволению. Таким образом, число А. для каждой кривой вполне ограничено. С тех пор как греческие геометры стали исследовать свойство кривых линий, образующихся на поверхности конуса от пересечения его плоскостью, стало известным, что ветви гиперболы, будучи неопределенно продолжены, непрестанно сближаются с двумя прямыми линиями, исходящими из центра гиперболы и одинаково наклоненными к ее оси. Эти прямые, о которых упоминает уже Архимед,...
Энциклопедический словарь. Брокгауз Ф.А., Ефрон И.А.
АСИМПТОТА (от греч. asymptotos - несовпадающий) кривой с бесконечной ветвью - прямая, к которой эта ветвь неограниченно приближается, напр., асимптота гиперболы.
Большой Энциклопедический Словарь
Асимптота (от греч. asymptotos ≈ несовпадающий) кривой с бесконечной ветвью, прямая, к которой эта ветвь неограниченно приближается. Например, у гиперболы у = 1/х (рис. 1) асимптотами являются оси координат Ox и Оу. Кривая может пересекать свою А. (например, график затухающих колебаний, рис. 2). Кривые с бесконечными ветвями могут не иметь А. (например, у параболы нет. А.). Понятие А. играет важную роль в математическом анализе. Так, если график функции y = f(x) имеет А., определяемую уравнением у = ах + b, то эта функция может быть представлена в виде f(x) = ax + b + a(x), где a(х) ╝ 0 при х ╝ ¥. ═ Э. Г. Позняк.
Большая Советская Энциклопедия

Относится к: